YouGov - Quantifying reasonable

Sample Size: 2066 GB Adults
Fieldwork: 29th - 30th July 2019

		Vote in 2017			EU Ref 2016		Gender		Age				Social Grade		Region				
	Total	Con	Lab	$\begin{array}{\|l} \hline \text { Lib } \\ \text { Dem } \end{array}$	Remain	Leave	Male	Female	18-24	25-49	50-64	65+	ABC1	C2DE	London	Rest of South	Midlands / Wales	North	Scotland
Weighted Sample	2066	682	638	116	795	851	1000	1066	227	870	492	477	1178	888	248	690	446	504	178
Unweighted Sample	2066	724	633	133	936	833	918	1148	139	872	515	540	1260	806	217	728	420	503	198
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%

In court, jurors are asked to judge whether the evidence presented against the accused demonstrates their guilt to beyond a "reasonable doubt". That is to say, there could be no "reasonable doubt" in the mind of a "reasonable person" that the defendant is is guilty. Now imagine that you were on a jury and the case hinged on a piece of evidence the prosecution had, which had an $X \%$ chance of being accurate. How accurate would it have to be for you to consider it to be bevond a "reasonable doubt"?

At least 50% accurate (i.e. wrong once in every two times)
At least 67% accurate (i.e. wrong once in every three times)
At least 75% accurate (i.e. wrong once in every four times)
At least 80% accurate (i.e. wrong once in every five times)
At least 90% accurate (i.e. wrong once in every ten times)
At least 95% accurate (i.e. wrong once in every twenty times)
At least 99% accurate (i.e. wrong once in every one hundred times)
At least 99.9% accurate (i.e. wrong once in every one thousand times)
At least 99.99% accurate (i.e. wrong once in every ten thousand times) At least 99.999% accurate (i.e. wrong once in every hundred thousand

At least 99.9999% accurate (i.e. wrong once in every one million times)
At least 99.99999% accurate (i.e. wrong once in every ten million times) At least 99.999999% accurate (i.e. wrong once in every hundred million
times)
At least 99.9999999% accurate (i.e. wrong once in every billion times)
Nothing less than 100% would do (i.e. never wrong)
Don't know

