YouGov

YouGov - Probability perceptions (2/3)

Fieldwork: 10th - 11th September 2020
Sample: $\mathbf{2 , 3 0 3}$ GB adults age 18+

Total	Gender		Age					Social Grade		Region						
	Male	Female	18-24	25-34	35-44	45-54	55+	ABC1	C2DE	North	Midland	East	London	South	Wales	Scotland

Please imagine that a sports analytics company developed a model that could predict how likely each player is to win a professional tennis match...

Now imagine that this model predicted that a player has a
1% chance of winning their match. If the player did end up
winning their match, would your assumption be...

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	18\%	20\%	16\%	19\%	21\%	20\%	18\%	16\%	19\%	17\%	18\%	19\%	15\%	19\%	18\%	18\%	20\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	49\%	50\%	48\%	58\%	47\%	47\%	50\%	47\%	53\%	43\%	48\%	47\%	50\%	47\%	51\%	51\%	47\%
Don't know	33\%	30\%	36\%	23\%	32\%	33\%	31\%	37\%	28\%	40\%	33\%	35\%	35\%	34\%	31\%	31\%	33\%

Now imagine that this model predicted that a player has a 5% chance of winning their match. If the player did end up winning their match, would your assumption be..

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	20\%	23\%	17\%	23\%	26\%	21\%	20\%	17\%	22\%	18\%	19\%	18\%	18\%	20\%	23\%	19\%	24\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	45\%	45\%	45\%	50\%	39\%	45\%	46\%	45\%	48\%	41\%	46\%	43\%	43\%	44\%	45\%	51\%	42\%
Don't know	35\%	32\%	38\%	28\%	35\%	34\%	34\%	39\%	31\%	41\%	35\%	39\%	40\%	36\%	32\%	30\%	34\%

Now imagine that this model predicted that a player has a 10% chance of winning their match. If the player did end up 10% chance of winning their match. If the player did
winning their match, would your assumption be...

- Unweighted base

Unweighted base
Base: All UK adults
That the model was correct, and this was just an unlikely outcome that happened to take place
That the model was incorrect, and this outcome was more likely to happen than they had said it was

Don't know

2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
22\%	24\%	19\%	25\%	28\%	20\%	24\%	18\%	24\%	19\%	18\%	22\%	19\%	23\%	24\%	22\%	23\%
42\%	42\%	41\%	44\%	34\%	45\%	42\%	43\%	45\%	38\%	45\%	38\%	42\%	40\%	41\%	48\%	42\%
37\%	34\%	39\%	30\%	38\%	35\%	34\%	40\%	31\%	43\%	37\%	40\%	39\%	37\%	35\%	31\%	36\%

YouGov

YouGov - Probability perceptions (2/3)

Fieldwork: 10th - 11th September 2020
Sample: $\mathbf{2 , 3 0 3}$ GB adults age 18+

Total	Gender		Age					Social Grade		Region						
	Male	Female	18-24	25-34	35-44	45-54	55+	ABC1	C2DE	North	Midland	East	London	South	Wales	Scotland

Please imagine that a sports analytics company developed a model that could predict how likely each player is to win a professional tennis match...

Now imagine that this model predicted that a player has a 20% chance of winning their match. If the player did end up winning their match, would your assumption be...

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	25\%	28\%	23\%	29\%	33\%	26\%	26\%	20\%	28\%	21\%	24\%	24\%	21\%	25\%	29\%	25\%	27\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	38\%	39\%	37\%	39\%	30\%	37\%	39\%	41\%	40\%	35\%	41\%	37\%	39\%	37\%	35\%	39\%	39\%
Don't know	37\%	33\%	41\%	32\%	37\%	36\%	35\%	39\%	32\%	44\%	36\%	40\%	40\%	38\%	36\%	36\%	34\%

Now imagine that this model predicted that a player has a
$\mathbf{2 5 \%}$ chance of winning their match. If the player did end up winning their match, would your assumption be...

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	26\%	29\%	24\%	30\%	35\%	29\%	27\%	21\%	29\%	23\%	24\%	29\%	23\%	26\%	28\%	27\%	26\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	37\%	37\%	37\%	40\%	29\%	35\%	37\%	40\%	38\%	35\%	40\%	33\%	37\%	34\%	36\%	40\%	40\%
Don't know	37\%	34\%	39\%	31\%	36\%	36\%	36\%	39\%	33\%	42\%	36\%	38\%	39\%	40\%	36\%	33\%	34\%

Now imagine that this model predicted that the player has a 30% chance of winning their match. If the player did end up winning their match, would your assumption be..

Unweighted base
Base: All UK adults
That the model was correct, and this was just an unlikely outcome that happened to take place ect, and this outcome was more likely to happen than they had said it was
Don't know

2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
29\%	32\%	27\%	34\%	36\%	31\%	30\%	25\%	32\%	25\%	29\%	27\%	23\%	28\%	33\%	32\%	31\%
34%	34\%	33\%	38\%	26\%	32\%	35\%	36\%	35\%	32\%	36\%	32\%	33\%	34\%	32\%	37\%	33\%
37\%	34\%	40\%	29\%	38\%	37\%	36\%	39\%	33\%	42\%	35\%	41\%	43\%	38\%	35\%	31\%	37\%

YouGov

YouGov - Probability perceptions (2/3)

Fieldwork: 10th - 11th September 2020
Sample: $\mathbf{2 , 3 0 3}$ GB adults age $18+$

Total	Gender		Age					Social Grade		Region						
	Male	Female	18-24	25-34	35-44	45-54	55+	ABC1	C2DE	North	Midland	East	London	South	Wales	Scotland

Please imagine that a sports analytics company developed a model that could predict how likely each player is to win a professional tennis match...

Now imagine that this model predicted that the team has a 33.3% chance of winning their match. If the player did end up winning their match, would your assumption be..

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	30\%	33\%	26\%	33\%	37\%	34\%	28\%	24\%	33\%	25\%	28\%	29\%	25\%	27\%	33\%	31\%	33\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	33\%	32\%	33\%	31\%	25\%	30\%	37\%	36\%	33\%	32\%	34\%	31\%	34\%	32\%	31\%	37\%	32\%
Don't know	38\%	34\%	41\%	36\%	38\%	36\%	35\%	40\%	34\%	43\%	37\%	40\%	41\%	40\%	36\%	31\%	35\%

Now imagine that this model predicted that a player has a
40% chance of winning their match. If the player did end up winning their match, would your assumption be..

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	36\%	39\%	34\%	47\%	47\%	36\%	37\%	29\%	41\%	30\%	34\%	38\%	30\%	36\%	40\%	36\%	38\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	27\%	27\%	26\%	23\%	18\%	27\%	29\%	30\%	26\%	28\%	29\%	25\%	25\%	27\%	25\%	32\%	26\%
Don't know	37\%	33\%	40\%	30\%	35\%	37\%	34\%	40\%	33\%	42\%	37\%	37\%	45\%	37\%	35\%	32\%	35\%

Now imagine that this model predicted that the player has a 45% chance of winning their match. If the player did end up winning their match, would your assumption be..

Unweighted base
Base: All UK adults
That the model was correct, and this was just an unlikely outcome that happened to take place ect, and this outcome was more likely to happen than they had said it was

Don't know

| 2303 | 1059 | 1244 | 177 | 363 | 391 | 352 | 1020 | 1419 | 884 | 564 | 384 | 225 | 268 | 545 | 108 | 209 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2303 | 1117 | 1186 | 256 | 369 | 404 | 348 | 926 | 1313 | 990 | 550 | 380 | 215 | 311 | 534 | 113 | 200 |
| 40% | 42% | 38% | 48% | 47% | 42% | 40% | 33% | 44% | 34% | 38% | 40% | 38% | 35% | 45% | 36% | 41% |
| 24% | 25% | 24% | 21% | 17% | 23% | 25% | 29% | 24% | 25% | 27% | 23% | 23% | 24% | 22% | 28% | 25% |
| 36% | 34% | 38% | 32% | 36% | 35% | 35% | 38% | 33% | 41% | 35% | 38% | 39% | 40% | 33% | 36% | 34% |

YouGov

YouGov - Probability perceptions (2/3)

Fieldwork: 10th - 11th September 2020
Sample: $\mathbf{2 , 3 0 3}$ GB adults age 18+

Total	Gender		Age					Social Grade		Region						
	Male	Female	18-24	25-34	35-44	45-54	55+	ABC1	C2DE	North	Midland s	East	London	South	Wales	Scotland

Pease imagine that a sports analytics company developed a model that could predict how likely each player is to win a professional tennis match..

Now imagine that this model predicted that a player has a 49% chance of winning their match. If the player did end up winning their match, would your assumption be...

Unweighted base	2303	1059	1244	177	363	391	352	1020	1419	884	564	384	225	268	545	108	209
Base: All UK adults	2303	1117	1186	256	369	404	348	926	1313	990	550	380	215	311	534	113	200
That the model was correct, and this was just an unlikely outcome that happened to take place	42\%	43\%	40\%	47\%	52\%	45\%	41\%	35\%	46\%	37\%	39\%	44\%	41\%	37\%	45\%	36\%	49\%
That the model was incorrect, and this outcome was more likely to happen than they had said it was	21\%	23\%	20\%	21\%	15\%	19\%	22\%	25\%	20\%	23\%	24\%	19\%	20\%	24\%	20\%	31\%	16\%
Don't know	37\%	34\%	39\%	32\%	34\%	36\%	38\%	39\%	34\%	41\%	37\%	37\%	39\%	39\%	36\%	33\%	34\%

